Dyson Sphere
Blueprints
Blueprint
Add a Factory
Add a Dyson Sphere
Add a Mecha
Collections
Help
Support Us
Login
Perfect Belts - part 2
Copy to clipboard
Perfect Belts - part 2
https://youtu.be/3eIeeJwM7cQ
The Preview feature is unavailable at the time.
Animate
Blueprint
BLUEPRINT:0,10,2003,0,0,0,0,0,637738124640225423,0.8.23.9925,Mark%20III%20Belts%20-%20Part%20B,IN%3A%2036%20iron%20ore%2Fs%2C%206%20copper%20ore%2Fs%2C%205%20coal%2Fs%2C%20%3C1%20oil%2Fwater%2Fstone%2Fs%0AOUT%3A%203%20Mark%20III%20belts%2Fs"H4sIAAAAAAAAC41dB3iURfN/7wghoROK9KJSJIBgIAQwcO+doigK+omiVAEROyA2BAXUAFbEQlGKKIigAiIhuSgG9RNs34eKgBTBhh1Q6Qr339ndeffnZe7zz/Ps5qfPze3u7OzM7OzsXsjzvPqq1PDMv06qnGpxyEt43kb7v0/11oft/8/08qJtB873x7TILkkkOkdvS7zor5+THe/bN96p9vQJXXdUOMOboD53RsjzEiH1NfbbQrpW/6p4ff0GXmkkVFqvEPEfiYIYlU8qnOadVJ9LqH8hj7/A83QHTiR6+JU8zw/NqNcZcUVvaowKEX8oEJczXS/yM72mfmj0yLWI+UMnM7prQvrH3aZ/aVRV9Pb46dSa6irin1WXf7bdXii0XJ6qyt5Sf38iEQnlfbYW8UlFeNISXysQp1NFY0z3tumuIg6p8YbsmP8lEFegan/iXn/UiURk/ZxT45W8SX7JeTX9MSPblhyo07/ryBZN82i6GiuSJUSQ+Pt0ZRA819sTqaC6HNr4cmfEmd7rUSrUel+h9UyqmnuRSIa30g8926sI8emK8HRLXFUgrkhVlveDX55aU4xCXF6Nubwd94FQWeJKZs6a+mnEqGfrFSH+XXH7d8vxqgJxZSbW41SShfinxOooFSK+R+h2FWZY2Jumu4q4nOpyOdvtawRi4oOX402yTKpXhPgUxaxTLMOqCcTVTLcXBhxGvFV1eavtdk2BuDpVfyVmBTKN+Lhi1nHLsCsE4hpmnkuVYES0WCKuqcZb0475SoHbWSzf5bxNmkmIcZ6/EYhrcssVaZyKAPFhNd7Ddsx3CN2uRVWvzfv8CXZxFH28z995QU2ly3rGq2YP6Hbwt9UxWhxvKL3zAi3FpMVR23RhWiBZiI8qhh21TPtLaL2OYftsv6KSa5IsxPwhLzOapI60OvBOMXC0au2oHitiTzHMs0zzBKbVZabdlZjq07gJjyqa4I/Zm13ydSJHEXfU416jSEhMQ0njrkdwzL+3R8bqL2gY77xie+TMxY8rnB9Pq9q923kHDeMqhcyCSGZcfSuqhlmqy4iRcfkC4xqYuVvpV6PxjsjNQ4xjHyWMvSEzLoM4rcQT8UdNmhRSScX1RlQta9kkj9Uv4jfKT41RoZaBOGi5MVX1fs3yjyf2+ZNz1hTvPpjlP5k4oi3nzLOm508+2KyEmLZJfe5LGrf3d6Y1IZjhzVA2a5sWEsSV1Jgr2XHXFpjW1Mx5RI11k17TiJHjrQXiZma6mvpVaGWpsSLeqVbYTrvKOgjE2pkgbTJDr7I6ccKlZIKWtCkZWO3yeJ1Lq2oTdHPYqKFkE3QafwGJaWhEeh7iBmrMDey4bxJaP938UV0lXaYNvcNpijDNEpcXiJsbSWuvluWeCBEgPqEYdsIybZxA3MKIW3WjyxQBYmw5SyBuyZIWJrNjJY1x+ZxNcSpE/EC4LHErqkgV6flVwoE4obqcsN1eJbR8Bi8QlmvE2O0qwupqzQxLt+NEHFaEYUs8QyDOpkpZjWiW8giJAHENRVjDEm8Rut2GKjK1TIAYu31YIG5L1eHE7gi7kojTFWG6JX5T6HY7szgWKg4f1asJMY45SyA+k4UkXSl/cqkQ84dS+aTtueXGJJK2ZcY/qTn+yc5zPaHlDjxVvI4Rt1NuRjvravgCw87S37B5S7CmX/94i7WcsfjVI94KLOcw9bmFXlkDkEOQVFBlr1RzGTG3MiejTdK4zb+O5s/KYCkizlDczrAcnymMm/Y3WouWoylSdhox+mfdBOJcqube/rh/ROvwkuKJ4x/3H9U6vHN8sdLhexZ+EqdxUytk4JN1uB7bwUQ1vxHtO9Q0If6n+c6jijYtPFbEuBPoKExZF6rI+9eiqbcRDh9QgnLACsspAnFXqqrE5/vTLxiuxtornvv2fP9BtfeanHOieMrenNitB3P0fP+iSIaSSkr3QuVs12nT1s2IalNfL0lt8B3+U7X8p219kND62VSle3Wj7EYjrqrGXNWO+26BmDwI7Waxe4EYt4xNBOLuZgTblPe/x+63HB5TMqWIChGXCMQ9mDiTuKzkGnGNqo/pQsSXCDo8Yhi2MNCeiFGrvCwQ05K1xj7YdwX4hLLVJ6y93i3IeJQq2lez0keM7lVIII6Z1VXdD9vtEmJsubLAsHPMPB8IZBrxsiMFMSpE/L5AfC5VpD15u4T4D9XqH7blZgJxT15Z6VYwEHc5XhCjQsQVhTGfZ/60j1aw9hkxbp0eEFo+n4m1PKuuIsaF8ZBA3IuqvxLZ0SmJ/2oVlO61iWYPfM8f06JdySRw5HsrklleWUf+AoL3eZN6UCEVhNjPnBqjksqhvdAwrXc0U4mmUUcOnzb3qkIqRPyq0PXeVJ1MfG8cOSUciJFpAwTii6iirTErAcRoAFYKxBebbucFXEaMwZhigbiPEdE20TfPG64dWOL+Fyf7aCc+rLjdz3L8A/W5NfQFFf7OcQqT6N1u2MZQEFdQJreCNbsxofVLqCrvnR9Nt4474r9Ut/+yXW8piOml3HWzaWuuhWW43fU1Vt0Odn3qcw8JwkLxJe1iVaKFoXxvxDhl6wSVdJmnxzM1WM+IUZ+Fha73o6qKGicpBBMzdHhelWuLqRDxZQLx5YZpGwPPCPEO1eUdttvnCcQU7dDeAodCEKMrfYMwXf2poiCMM3oOI8PeE4ivpIo84Ao25IW4rmJWXcuwTwTiq1jKMkmu9fbQ4cOq1cO25SoCMa04Herk5YgYDcA3AvFAqo4pdcTuM2I0t48KxGT8tQ5nJiE+orp8xHa7WpmpCnsXpxk02HBduVQJUoQ1Swg/mNiqZL5dfMKGuWui2WuLdXBCfS439PcINfkqQwiSRuEIFuIfVA9+sL3YLAxhKHOeCRBjNGukQHy1kfO+QQwJMe43o2WIw94qO/5hPAN1iQd2Bhi3uKxWJyqpXMzh3P2Q3SIjxmXaVuj+CKpOJN7yv6PQtu6yw7iN6iKsNIoz6aAUiyliVMs9BGJiplZNlYnTqjXE2O0aQrevNQKzMFjXiLHb1QXiUTxlvONDjApimNDt66gi87Pr+WJtTQhPSazQohpS6jjXquT2imSiV9aaXM+yzssTMRrChNB1UllaJfPyRIxb5iUC8Y1G6GpFte1SbiXi6oqwuiXuKRgDCtRoreq66jCeAaULTLuZqnUP3hYZZ6OXFwy+LdJcBx9j8X+n5QXBx4KQ8RSS9563EHwuHImkKemanPNSMZ1KaEOoZqB+ljOEZ6qukweRbAhHm/9Y6degLtv9J2PU628JjBtjF1sQ2UCMArNSGPtYQ7wtiCMhXtCschcqOiAlEN9qRHVTEO5EfHXP6V2oEHE/odvjWNJakuW0ksYYl2cnoeXbqKL5vaKojT55+jzxVmTryR46dnxKrYOFT9+6WYcAaXluS1LJBG63rUfdbshhXKKFgrRR6F8rB94NIA4rdytsXa65wrjvNJ04J3os0UcTIMbpyhaI76KKNqt8bIUYiW8UiMdTRbqbFwZiJB4icPxuXp6sQRFXUMyqYBl2hcAwOrrVaok3MYhRvn8Ruj3REZcCcek/nLKaYAEdqOmgFIc6EbdQ09TCTlWpMOZ7qcpZPda/btB8JVmReGz9WP8ZrU3z4++dXJl/apavj6ZHqDFfEzbBGQxSTOLV5WIq20Qf9Sdh3JNN11f6vJYRo4iOEzg+xUxXq2hGsMN3GB37G4Vx30dVJSWWzCjEtx4riFHRp29Ct++nyrgZTbVYIq57xck1VFJ5Cw8Y+W5jZFobeYdx83qL0O0CFhR28BCjlC0SiKeaTpwTyDRidHD7CsTTqKJdQDlVjF/m8IpvHu5ChYhvE6Zquul2UbAUEaMiHC1w+0GeZzI9PM+MMfh4rtDth5jbvFlFjArhQaHlh6lq7A0NzgEQo2wfEogf4WXpZNthtNfdBOJHmdvsWiDerQh3W+IRAvFjRra9wLwiRoYVCsQzqKozrlEQtfzw/kZ+ZoLMToc4RS0bWUN/UH3uT69s1PJxgpR2cL12NTrECQ+2nsIbEF9Zpz63NFTWU5jJMs6cRozCcrUw309QdTgxxHenEg4j19ME4iepIkeWFQHio4nV0aM2HNZXkPGnjKSNVouir5U0h3EH2EZo+WmqKMjKhwmIE6rVhG15gkA8i2XcGXeH0W5NEeZ7NlXVNt0WeULPd8/4d1m3RxIn3Xy3tdNFO7wzhSj1HIKUm1PRegeIf1bd/tl2fZDAtLksqnqsyvtH/Kki/NQSnyt0/Rmq6FzTOLWt4sS0y0jSlLfUDIIzFFwPh8tK2rMGeoGdRozh/f8Krc/j+T5GmzV75scYVfETAvF8qkgBLmu5IJeTPxgvyB4co6J3/MJ8LzDEdPYTCY6lGeMG5guh5YVmzNuCVCrEaH4GCsTPsaRxIhthk8jWLl6zcFBhg4WVtLdARm6nV9YnXUQwwzs9cOgQ46nEE8K4n2eO8xE8YgyTPCx0/QVDfMB3R5QOzz5SEJtt4+SzBDFdTFVVtUHVoqkIEOMKe1Ho9hIj45OC1hDjieM8odsvUlVnddQfqf2zWLzF+qg/W/tnkXjYW5X/SctV+vDMV5+bHCrrny0lWM47O8raBPEs5eTMso5Oe6HrL1E1ctU6/w69wprEP16+zm+pt42R+Ippj3XrabeNC1VTN4bLbhuXsaiyj4IYT98eEca+nCpS/mPt+ibMlmQ9WJJIyESok9f3ywQbKVfDhAfoC4r8OqFiJbrVS+Z+07Z49h2JzvQFP6tPtwuVzaJ4hRdLBYqbBkdZBjer934RFR1fEbr/qul+76jL/HP4k5u+XauLIm4lcH4FVRTJG2cDz4R57D7oNjLBZwlWdKXlfBDiR9y0wtQYlVSnFKtYZNmdRoyu9fPCuF/jZepOpBw+pAgPWeITAvFqqmijCmeeAcYdQS+Baa9TRe4Gqyc6H5lg82xPGXhl7vBP1+n5pjTJhaGy6mmN6TpZz9FgSQ1+esH2NVTKOvYmxVcfRVMSBCfmIkbddofQ9bVmukojVSi2MCI9DzF/KFWKVRFVtK45qoEYk5xmChynExvlanYMdgKI0d06XyCO8wJJVyuLFwjjNXU2FlHRYQJBq5YwMcdTEO9cVFxEhYhfEVp+gyrK0Ql7aVGTMunwQdXlg+zYC9x+0/xpGL1fnwFmxysq3F6fAWaX7AfNMlCRFAqewzqWNBYOxIcuLKdLKkGhCJf2mHgHhBjdjoZC10t1x5UyqEEGXxEg/lER/miJh5ZhWti7yIa711NFY95AJ3J7s0sIf6lP5JroE7nvEyY1gVbZG6GyMdS3CVIAUo0oauy4wxixv1UYwjtUvda/W5SDkT/36xblYOSwzQ0Dq0Kp8PmhslblXQPPCZYmYm4lFff/TRVlhnHAGXH78lNj7f9HPiIdOuljDlZJiFExdhTGvYFFtordFSDGlbZfINY3CowOX2rThR3O8F6PZtgoT12B+H3NEKUMXfDRYdwF/yGsNDqV1UrRqWGHccx7BWK6U6B3wdXJ4VGGDzG6m3WEbn9k/rQ3usye8zPGbs8SWv6YhYRPnY8kYvbUuZWW8Ry7xu+0EpUs4//hce+gg4YW7bSzO1F7El31F1xpv2C7+lxvYZHQrkF7jbylQIx++vnC2CmhVa/zCjbdCDEeaz0vaFY63tQGobLNIkGMpxQTBMZ9StXxxBETI9eZ7IjdxuY1odufUUWOTpp1NRA3Uq02si33E4g3Oxk3p1CI0c3OFsb8OVV0WKy3E+ZEKsCb1TZys91K7hDGvIUZxnKNGCM9BQLxVtNy0yjvCBCjz/KKMOZtVC3pf2b0DqsMf+x3ZpRd7Bk/3RgoQ9pOkQlOVoZf8ApjI4AYtcpBoevbWcY5tI8Yr3xcI3R9h5muUlBJDqcpdZRmVVKG0PJObrkcJW5qRjnMH0qlw3dRRT4pW03EeOZdXej2l3a6gnsDiPlDqVyt3Z4ey4VqbEU2OONwpaemx6noSKbQ8h6qXu3fxG5omsR/6dckmOsF1a8P5rpIkewT5vorgpS/oq2GzWVh3OZoQYwKtX6nwPGvqeo0cnHEbCV7xu+dsjjCof4dJ1bm3xzqqreSdCeGLiEkbyW/MXBbwGnEqBjGC61/q5mqNnBFpI5HttV34DbbJCA6tn3Fuhy0wiKCNv2OII2Vz8O+S/TxzXlYnfiMLf8pvHPzRt397JCJ0Cc793uN/LSKNiOG6Qiuw7hQLham7nuqnrh9VXAR4fbxq/yZOom1Y3zIWdPzv2rQRV9EoIsWNSzzsPUfCGbFC3yOs930doGfpuOq2fHJe3NiO+3431GfbiXE2X40QjjaT5w0KRpfJm7xH7ApGtNrNM+9ONZGj5+S0bsmbW7oC+gARp+NdSPDr7YViHH8lwvT9zNVlHdb2wYuEO9XhPst8XCB+Bcjth2D2BpiVJDnCcS/UhX9YXtktmZcLP5y5o4IB6SJcZdYM0z5DHT5JplxtJC0euYzA8Rohp8T5n2/JVamd5q1Kg4j8VkC8QGqyLX+mjyIka21m32vXnEm8e1LO+dkGAYKMv8bQVphWWR+7a6QMZ7YvCq0/rv5nnOCYN0HygEi9Uw52AdOrZs77pjRNnQWNjRUdsH8Ybq/J/AUEeNWY5IwbQeZcZxRgvg3RfibJS4ViOk8Ra91ztNDjC5n0zLEbpNz2DGPY08OYxyiv9CDI1RREi+PF/E+RbjPEjcXiI/q5hNDAuWIGP2YkEB8zBDvjnDIBDF6zFUEJ+g4VQ3HDQq0zJv3D/Kr6sXSXC+WsF0sPRXJx8Ji+VN/gb5PMTpwO/95a2U6QDf2tFnWWcA6mu8w7grPEMZ9gpnmxu0wnlqVCuM+ydPFx1yI9yiG7bFMyxQWih4D6TMmQIz78ceEbmtE54KcpI4Y53qUQEzZ4Pbqzza4+rOtTOZYJYGYkj41t5lJiPF22msCcbmQHfMEexmF8Ad0wWxvdsma0IriSaMzdXYJeUSk/JNDo3R+ppco56ohRsUYFlovrw26st/mKkzNOBHzDeu189+Ll4wvr1u/37aU3Hq6WTlTg0vwiI+pcR+zY98ltF6BEIWCuUXCNQKfpmOsul0kdGxNiwPVMv13Bv2X0poRjqMjXqG2GSvsViNTaD2T55wlDDGeE14vEFc0xCuDBEfEuLF7X5Bz8um0QqxEbra1JoyDlZRibVemPw1+HeYf0g7QhuLig8P8B7UDlB8vnzM9/8jG9dr9oM839Mo6QFV4obB8I0ZZv1oYN904t2ppW5DkyhilLV0grmYWihccPCCurAgr88msQFxdi5tSgDxFf8fOdzkqENdgSatM2wt9BODwig3bO1FJtdWgq2/6TJh3/YjRCHYSWq5JqPOU+f6MREK7Gw9Mnx/4rjcq+d6+z7gedOFqAJ2PwgqjJVuLFcRIcreVUvhI4Xe1u10vvmvbtI6rKg/W813qmRtayd5Dbaoim9cFGqb443X+Vn3drVc89to1wXU3WlGUxpC82amj1YzyGlx6pcO4UH4Wxn8KIQpKuituDiPzLhOIKYRmr0osDZKZGe9Wa3u3Xd+fC8R0b1CfSrvWHEbH5xRhidYnVM7rG60QPH7g8Adqc/eB3eB9VqblsPejMeReA17nlUlYlKQhRnt2s9CDhobrC5WklUb4ljljtCqnCWNvRKjnRxUjfFr5RVqlyDwbMvvSW5X/wNVVtdCQBqVU0+QtZmO2afzECOLhY3/PpZJKRTWhP5QoE9z5BfxT+dejVKjrNawHEYauN+WWeXtJD4Ds1PLeJD53+bO5j7f8XWfAU5JAY8FbbkbVlmGN7Ildw/jiKxr5HNXeVNw7SLGl66v7BXk/lSpysdmSIMZYzDFh2k4zqH1wtIsY1dR2YdpOJ/TklY/bJMBYfMnQx+0hc368a3hVfoeB93ehrt+gONZaSAJsbvRcnr1T1VGf1Laj85QlbUo+h/MUSnSkQ6jk85QWRmQjwfEP4vqRKrqkutpKF3c8cwTACb4O48b2JoFxrUzXe0fLW2Yhbl1zWpwKEe8WGHcGj5sDV4ibP7OqE5VUQazWPGZ9bmKinQHGs/GRZbrtLm5ksxvGET/EuFwXCN1vwyaZ09IQY3x9jeBytyVEMXXOviGu8wn1Dphziq1PFea8HRvHKgHnHcZnSEJC62eyTfdIs1qbzniv6vZeXizCuNvztLmWHcZA1nBBYDoQGpreKTLR3jl4Z0/HSJdwsbKs64tr1/e73X/IrPM/QuYxn+R1fhb7MhyDQIy3AK4Sup5DiAI3pdZX/07hSSfe0haWNnd32JACxeDoVkuy79rRSl0kw2VkBBhDp28LY+/ETgHvhBEj8ZkCcS7b80yb2Iw4WMxlnCH9DpTXmYjHKTM00ea+kE2rpVM5apZUKl0b/7Cog94x9A+bB26Sdwx5VG1cl+VPtPGXgxuyfJ62L4fcFK+4/8V8+gLqJmWbZSR9QRcW13R7swcxapnThWnryl6kHq9NXWL8T2OnS/X63LCi3VYiRv+1i9Dy2dqLXB32OerbaX3YNya5c3xAYmV+g5eqaZNMqXhkmpJ1e75xSc42OQGqu4j/FjYVWu9uxl3XnCnYZH7GuDtOF9Z4D+uKBGkriNEgXiS0HOE1zsELxPyhVKqZbm95GxKJHgPoWq8iQLynx+AYFWr5AqHlqFHJm4JnZhBfPr1PMRUiLhYWSYylrKL11xB/e7wg9q29VN1AaPkcQn22L478qR39FcXhnxZHHtd7tFbx7mdNz29es4cOUpPjt9Yru0ejDGqdnufuBTucqaYq007XPqH1nmxN6pD5UVtKxHhimS2Mm+6R6mtwrMMRYzpHntDy+UbKDvh81RMxElcUiHsZt6thcJ8IMRqDRwURvYBb5uge4sFHCmKDbVZhb6HlC9l2c7YNYkzb+UxgWG/TMiWzl0Jie6k9J08l32ZlX8QiymYHMTKsjzDmi1lITHJzryLEGJReLYy5j13TvgvGO4xOT1home4l6Ou9TIAY44v5AsMuIZSjFAOn2SLG9KwbBOJLmWHlaH3bNc1475Z5MSo6xVro9r+YYZn2rRbEL3/TQZdUzu1l3HKGVfiIPz+RW0yFWr5U6DYdsuvzwhrEJLUMEeN6nipM1eWm2zPUnntT8HQWY9TdrQTiK9jgeZSSZbPhHXb7EU9gWH9C5tmooXoNI37/kW9yqaRi2JVsNVj1IMb1PETo9lXG2PVVNmq2zaRzuOWxglhLmy07QOD2AKO7ewcEiNucMz9GhYgvLNNy2PvJbt4HsjrSD/sopY+YW0q1rgeFPHM6zbsfxNurzY9RoR5cIox9sPEMle6yd8DJ3ZpmDxgXLMvofNOJl/UOmJ4qIDcr+YBxiJG2jUEgFvGviuu/Ws5/LzBvaMjjTZx5yAlx6nEbe321abljkByEGKM9HwnjHmbGHQke9kGMMdX2gqgO55b5/UTE6B2dJox5BKGTidPMllG7kQ7zh1LJOWVk2OtvfCvT4SzV5Szb7fuFlkfyCtM6zAahGWMw9jphzNeylNH8mgwyh9e/enYuFSIeJLRM7wvq5EfmMGJ8E7adMFXXETolra3/mI5qdojvz2obPCv1l9r5fGGjml/aMSZHNa+3cx0ZSFEetVElTGdFNF13TH0jp99nC4voCygV6alQ2SgPGQf9+Muylk068+MvjEdlTo2N+h+Pv9zoLOcme/rsMHL9dmHsN7Hx4xsPiFFMiwTim1kpOrl2GH2zx4Qpu4UljW8pIsbVtUhoeTQLS5rd6SFe+cLeXCpEfK3Q8hjDbS/CV0QQt/Fej7axGUYbhZbHEqKUO/YQENdWzKptGbZXaJnyVvWeixcFYvRTPhGIxxldtg1eHHb4xUP3daZCxN2Fbt9miL3gliJijOiMFVq+nVcXEyDGc5I+AvEdbADYgUX87srBMSpEPE9QCncajbISNIrDKJ7ThJbvYmLuKmKMWN8uEI93xGlBy4zxLLCC0O27Ca0PTepR3mZHIi53X7soFSIeI7Q8wa4q3yX+OdxciWZzK55zhHmeyKrIXQFzGM8JLhFavsdokhm+y2NxGJ99nC0Q30uIXhMw71vX07EUPgvtWeNk8ZW3VdSxFHpVgF5vTI6lTHLj7hs48YzR9JwncJwuKdncDmPcEfOHUoX4p9AfOgfTrqR9mI4xtnyfMO77HNPSouzQMkYRfUOYrvtZd3OcEDEa+q0C8QOsEDx7YRrxX3/06UJFr2mBuIAFJQgsA376xdq5VFIxbCqPmWPCiPHy2TsCw6Y5bWIy+xHjyhog3fkmZOImntYgiNeMGByjQsS+0DJd2tCnMbxlQIxnf1cIxA8RouADTw/ipmpJNrXLcoTQ7YfZwFe2j7Ih/njZ3K5UiPhuoeVHCF2zap9/i721tWX5vuAMaNC8tOAMaKH6IJmd5Njwo2yntUth7TRj9BBeF1on262PLTPtbQbEKKJPCeOeYVpuGuzwEOO2qYUgoo8z0/h4GjGmWv1bIJ7JUsbviyFGm9VeIH7CdjtIJ0SMDHtSYBj9P73XYmcGMZrau4SWn+JlyceTiBfvmt2JSqpl+TT9oTtDLJaI0aU6Vej2LFZFHM5EXKXtz4VUUm0byCDY59eNtUCMUxUXhGQOaxOOjyFGbbJBYNhco/g3+WEb90Y8cspXRVSIuERo+RnmdiWrQRB/e7ggRoWIpwsMe9Zxu6/dHjmMpnaa0PI8Qjetmm/vwDaMb14+P1jTd44dHaxpOhjtI6zp+dw6X0ShyzfS84fUTbpYlpwFusCMvTQywD4yibiWIqZC3Z8vcH0ht84WA/G2zmM6Ukm1r36OFwgLCGLcNpwttExPkOitMXsGiHFp7hSm7HkjadWD5FXCfJWz3I54p0NfD9fHFvRU1kuhshu1F0zraebaiw5GOFxFtVzFtv6s0PXFxl57wU4eMYa+FpchDnt97dHsEvN/GkZZcIh5/IsBx+CAlC7YEaeTD0jpMrkOLrtzfIcx3Pm0wMClPO/sRiNGrTpYkPmXmPvslyHmD6USmmVEbA7H+OTF4cYvL8ylkop4ubEknnJwjF+G+Je0qTEqqfbXLxOi1cXO7E8K36gPR81K+8gejlI0nn6fIvlw9BWWd5eC4TCeb3YXOP4q227+HQ7EqBxbCBxfwfqNU8sQX/rc4BgVncMgENOrZ3qny6oYMQZbLxWIVxGiE2Vzjp8dJ7XMr2j8CGJ6edgcHCSL6WsspuWst4AYF8t9Quur2fiz5UR8/dkzC6mksmXkBJGXGGybEKN6mihM1xrWqvVJNO1ul3FqGTf0hUxMLhanWDE+oZhGhVo+LLS81nY78MMR43TVERhWxCLKyxHxPy3NYjbB6fQctz1MYPxbrXvzqFDL9OxdcstxFtFoxvmRMSNrlxQkekReOZToQboNUw/IVq8Ml7VjJSHPvK/Gr+IgxtOIrwWmvcHj5ilC/E/jfpOni9MHEePtlXeFltfxdHFYAHEVtZWoYrcTXwnEbxllmBHlWxuI8YzvGWGuSy3HfbjzG+BFidXRRTZD5j2h5fWEdgwbFPgts64YFLzdMerIvMBvoQ35fwW/5W1WxewpIca0g45C12k7qd1MfpcGMe611wpdf5c1aYimyGpSxqhR9gjE/yZEueV32XFTl/mlyu9Bn9H1hwsFffaeWSR9/Yr2rQ7EaxXH11qutxTGvYEQBSV4mhD/pQj/ssRPCitsI68wTitBjGJ6v9Dy+6xJOS0aMRr8+kLLHxCii/D86i7iZ8fPj1HRUVqh5Q+NARgdhAYQoxr+Upiuj1hQ+OgC8Y+KWT9aht0gtPwxT1Vt3v0AHv7IZ52opNLh/6E/5txjdnD54v97+kILxl77mAbXPgzGl6YvFMa8idXRgGAz43A1JZ7VrEO/QCD+hNURB1cRY2jkQ4H4U6NF96jpORDkmDL+pzF/xurIvTbsMG6X/yVM1WZC5IPru3DKoSdc0f68Qjk13qPWehDVg4L1+JwqP22izWjvHP8ta6J/WJ/9rC8eBRntDS2Tks9+trCY8q/SIT5L6fCzrB5fJzBuKyHljwXxQsS4mdkuEG/j+XahAoeHP5gopJJKTL9gxmUF2yiH0VugR3KTW95uzE+Rr11opXoR45SNF7q9gxBF7Th7HfG9qwfHqBDxMmG+dxrUPrhFjxjV0QdCt3cZ0zOpB7vPiHHnc5HQ8pe8NHlRIMapGi4Q73bKf2XwtCfjd5Uqeteqo4cEhu0xDLs3whdjEWNUZ6NA/BUrQrYWiM9Wonm2Fc97hG6Tx6Q3bC4w4zCa24hATL8RaN/6NU47Yvwlwt+EqfqWF4b70SmHMbZSS2j5u5Bn4uLuSTCHUZelCcR7zXo+EFzHRYzESwVuUwqCzjdzFwYdxqmaLoz5B16S7Hcj7tdiWCGVVL7oj0T8Z6Jc9C77CAARc1hgJPgnJ9UHhwhvD/1E1QWrCnx+PmfT8oLAsds584LgFQF6rpfCfcmO3c+sFHRaifZJHS55YfbrVFIlo/5ifbNgw4I472hBLM/eUHlNmLJfWVhYuhCjUrhYIN5nWlZa0573IMZs9XYC8X62mpzqjBhzSZ8S5vsAW82KNn6EGDXKE0LLvxEaumpL4I9+unxLED+MzDzWlafroPrgUuENvd/NdGXYl+Jpq+QwMu0FQc7/MJrUi1S2gVbEU/Jr5VJJNdcHjTLcFMQLEXMLqeT8EBGb33qcpAkQX9d2pC7U7eUC0w6zxSQP2B1FR8p4SJuEMR8hZPxuukxBT+s7jGv7bWGuj2pNOmWd/6R2MzrG75m+Lrg4twjcDLrbt0i4OHeMdVo568QirnTm/BgVHWAXWj9uZLxylN9ARYxb5PMFpv3JTOPDb8RoNR8TiP8iZG4iGEuJGLVpjkB8gtChxFp/rI0hkUbhuyDnwGuFFBscL+i0k6xReUeP+J8kLcHEvG1AjLkaiwVhMdfOlIfAjEKMj4rGhHHTzRSrz4wji7i7stfdrc3OF4gpw9WK6bTgR9YY40X/e4RulyPiuRnbI3y/83jz7UHa9+0gpuTVny6IKVlUvbbZViNGjyFT6Hp5IiYXg9/5RYx39Y8LXadUfx0GYrlGjA5teaFlyuHQu1w+DEaM7zvnCsQZ4WCBmM0pYtTjzQRi4oPObmxmn4z5O3ar61thzBWJmJzYKt6M4ICU8bkzn+pChYjPEVquRMRkrzh8T5g9hhqwuujZmLiwuirzF/CiQNxaiWhrK6YfCV2vwkxjzx8xmt1bhK5XNcQRs1WyTxUzxkTzBWWI3UFKNfqS0/UPPa/0WZ9Xo7s/S2qVfJB3VXHvB7N0vsrtYfOSdnK+SnX6glX9a0b5MdWf+tWMtrY/vVzfLx94THTuQb8CkWyCa/BiYX8c8fcVni6mQsO4WuBBFi+WNGt2EW+pX3stlVQZvTWJmCynVob2tULGHzbpX0SFWj4kTB253NrRc78W4DCe6U/2yhLXZmI+gaOHdO/QJ3Cnxr+7qXvh23c30G89P6k+uDApHZgARa/tzflIsN9mjK33FLp+ChFXU4IyVd8obaW9ZH6h88jJnFjIyjyFCp4RZL6uWXFehF/2QvzrO1NyqaS6el+PuV7JOjuISycvyKNCXe8tzHd9Iqb0qo3Kyaeu04Ipr1QzvTr8MTj4pJrJZmPXadYbcNc5EfvUkGcTsVvF5zy9ZE3Ogtrd6AvODRsHL5GUiN2QxVWvNB3BdBgN4hKh+40c444C446WeSbrcWHaGmvTonwWd73DYcy5HCi03ISI6Zhyj/1lJzrKu9fesqQDhhqWcXTe2U8IETUNe+bYlrcUiPH47lNB3puZri8MDMLfsTOIK4Sun2r1XISzeRGjQbxQID6NbRpHOBD/bfMudJtsu968h+3NYcTYcobQcnMWFP1kb3AeZPAzOcdzqRDxXGGu6RhTpxvxw9CI0WM8VWi5JbtdfJCCGA9Vtggtt2J7xooQMX8oVTztDCKmFFHOnUaM9uw0odut2WfjXRDif2o5m1cWB9YRo3N/l9ByG7Yi/GQvYfNkbz29OC61i4NCQRcIi6MtuyD8IBNibL2RIGXttFpROwLjavUqQoxuly90/UxeHByZR7zoaOs1VFL+XreZrvY+J7IhRm/xYaHlDmzDeEEgRuI7BSk7i+d6g9bj2frnJcKkx5fUKJkCbhc9oTJF0OM5Rky9oEXEuA89Xeh6R+cx9gWP0eAmY+fHqOhNjUDciZcm/2YzYrzr1kUgzrWK0E+ocZt3hRzGZOwpAtM6M8c52Yl2hZsh2WmHDfOTb0K7wWQxzeOu8x4MMe6KCoSud2FJ4yeREKMmPVcg7mrG3dTOd4c4YZ7v1WC36XLJPmG+u9EX3KbsF2mTyTnPF5Mta29fwXi6mhMYsl33CT7L2Ww93VO9DmMs9XeB8/m8P+H9J+LBBe2iVLTdFsbenZWi+w0xh7ckVke38LGlQNyDiN+o0THymA2ZtO3dMcK3cs6HvSj5ZK8Ie9EIj9s9+u8wuhyrhdZ9XmUuVdhhDI+9JRBH2dGrRnuxEel5iAvP+1UXIq4nEMeM9ewbnAMhrqZarWZbrioQn8Prmy8IIh6Q+VwRFa3XhLk+ly0JXypBjEmcbYWWe7IlcU9RO4zn+mcLxOexUuRQAWJcnnOEbp9vlEMGvLvhMMp3QiDuZeQ7LcgIJDxZ70daxfd7iwq3Xl1NX0+kMOgPSV4xgQt43OwpIP6l64ZOVFLFmC50HN8EHN9UJmF3l9D13ixlVSmP3G4nGM+66/JiKjqjwCtLfBETs2uF+FD5qbFD/+O9+otZHXNXEeP53xnCXPdhjeKuWG/0pYdTbxSI+7JTGw4ky2H8WajuAvElxpHfFgQgEVft3iyPChEXCcSXmn3ngSA4gxj3nc8KU/Uvdjd4nIjx3c/9wlRdRsS0Tf7AegzE7TSyIHurl+SAx0Cx4+2CBenHOyB+GgQxt5IqVHC5c+ZH26NLh1MTG/m+gheHe/nBYUw9aSxwvL8xu3SmXQrn2wbPHbssl0qqQ4Yrudu8rgkX6GdqNxTfesvLhXNOb6wfraAgzEFhXV/FioE9YzpcQ8+YMwvoJP2k4HIMYIfHXVdzGM3PEUFgBrJO40QIxJirNERg3CC3FzF2GnFFtQOqaHdB7YSWKXFXn0pVptZ0JqDDdVSrdfj8U2h5CDOND0wR43zfJrQ8lI0ASxfi1JJm6K/m+eZxIq4x5PrOVKjl5kK3h7HV9Gz0EvEcpVHmWK2SIXR7ONtr9sER486vtUA8wmiV0UFXER9UrR60LVcWun0Nb1h5q4j4nxg2kohX9K8QRC9/6Fch+LmU5w/MC6KXZPRIHJOjl9eyBeHtA+Ktkwd0oUJdnyR0fRRznDdsiHtNnJ9HhYhfFIivY5eauYwYQwR/CRy/np15F3h2uMc7g2NUdEBGIL7B6LMZQZgb8Ttqqt6x00Xx4mRismf6WIfXMWLcRowXxkwJ2jprhl8+QIyewkMC8c1ETA9GcnYQ4vF9n+9EJZWg3GL1WMT93LTD6BXeKbQ8mu01e0SIvznYoTOVVJlhY9h6uKdCHMbwwEyh5bGsTfTD9ktqlVCo34Q7O8QT+/sW7lr6tXbs8tXnKMSfHO68lbvOyXuIuZVUXR/HxLwgEGPW/iRBym5jD4ldKsQ7q82P7bTvbfwqEN/O465gX+1B/PsrjdZSSWU17+CW+R0ZxH0avKoLtTxNkO87jYjeG9EPLKnWEKNXeL0wXXexQnBRLIcx2/MDYczj2R911tJhFNG7BOK7eVmyG4m4sbKUja21bCIQT+DFwdskxBgT7ySMeSLL9y6KTO+lH5arFh1vH8gkF+Nz62LQkSWd9yS7GPewOvKC3710eJ9SRfusOtogdP1ebt38WlnnOOFsG1doA24ltTxGiCtMYgNQi97QsfsPxqMO9ymiQq3XFMY+mVsfZ/OVCPPpYwGERWh/dYXQ+hQWVXapEKPZXSS0TmESfaXH/QCww166siDpqXc/97Mq5h+cQvzI54NjVIh4h8D1B8IeL7iVgSZhfM/adlEqRDxM6HYB2y6XiuEwRuWXCy1PNY5dw2CnS5fI7tE73ebxiY2z10yb84c5eQuZ+yDJHvE09gzdk2YO4/r+Tmh9OhHTIUIVCrKOSM9DjMavgUD8ILuVTi05vKz+z7lUUm1gHmLNwm9OIH45Y2qMijzXYW+ffT/pYXY5+A1+xPg6Gf3AVnL3HyHixf5En9/2rJM30e9sH4k895tQt/vs2570nmNlwdV61HiJdYN7jojRmpQIzHuMVZR7k8BhXCh5gsTNIGL6pa661ltAnF6vayGVVEbwcWdNigI7xnjJgpJiKtTyHULLMzl6546sHMY3Gd4SxvwE7/RZjyOecrIgRoWIawgtP8nWxP3CqsO7lEbdZbXq3QLxU7xE0+1hAuK/nYcIxE87Yi8g5luHMwZMWftJkzY6JYFuiVO2b3JKwizWa+4FUYdxrtMEMZ3NXiK/YvSDwjvt2+xPZz+fe+3xb7WCoBzMm8NlFcQcjmZxqNucNu9T3c8qaQwWhSK2pKKSAxVzedoq2F0+4gmXLe9Chbr/gDDnz7CSYD2OGBdJU4HzzxLxyutm9eAA891LZ/UwP8TUIf5n++n510QzdLiAjqep+8lvXM7jYEVdulRkb1MzpqyCkE0tLBS6Pt9tXjfBa3wGvzv1bV2IOCoQL+DYknuoxmH0kvcJxAtdJG92IOv/33t/z3G3+ce36L6nOZUxJ+sX2fmmrLDLBf9lEbtebLcR46amgzBlz5vdrxc884UYr2JPF4hfCHsmW4xDnojxKGuMQLyYLQqdLrOvynhwu6xiKkQ8SiBewkrRpVA6jJvXrcJ0vcgt64xX2zLjwonfFVMh4leFlpfy6mLPGDEGIS8SWn6J5bvqwEmRrz56Mv7c0gmRjhmT9JXN1YrwjP0Feq7piibJeFrSacwy7jpvHRFPUSZ4yv8ww/wbBMvZ5eTYKeL9B5Z2oaIXijD+l118aVNwyMAYvafLhfG/wqqZxRNxpfJTY5X+R7z8VR57pu0q4mE3vNKFChFXFLpNiSH66JJbQ4zpha8IxCu52/vVXoxiSoh7zc3OpZJqN7iK3Q5mEmL02V4QWn6Nuc25WYgxXj5V4PZqo5Yyoi7FzGFMuflCIH6diOmuOoe4EfOHUvksa4xO6xsktCHGDR39Bn1yy4XsYjOTEKM+WyUwbC2r4jSdn1W9xKhis5V8s/u/CkMZTfXPJfT0zGWL5IBFkXN60oLjDcb7P5kXo0KtNxRaLzZzPTrIBkWMaum/AsfjRhVPCo40EOORTrHQcglbEX7rEXGfb0u6UCHi+QLxG+zwcDQL8TXNRuZSSRXZepPH/J71V8zvIO7T2XF4sEJ3/64Q/JV1rBQ5CQIxzvcEoetv8Y6IpwgxMu1PgeOlLKb8S4uIMb/8iCCm/wc5LZ0kaKoAAA=="ADA0C67DFD66D6EDA70BF3183DFE34FE
Copy to clipboard
Author:
The Dutch Actuary
Collection:
Perfect Ratio Run - Let's Play
Game version:
0.8.23.9925
Copied:
57 times
Created:
over 3 years ago
5
This blueprint requires
705
structures
45
21
6
18
13
6
7
13
121
513
Tagged with